
Federated Learning

Cloudera Fast Forward Labs



 
 
 
 
 
 
Cloudera Fast Forward Labs

Federated Learning



Copyright © 2018 by Cloudera Fast Forward Labs

https://www.fastforwardlabs.com

New York, NY



To the future—



Contents 

1 Introduction 13
 
2 The Problem and the Solution 15
2.1 User Data on Smartphones 15
2.2 Predictive Maintenance 17
2.3 Medical AI 19
2.4 The Federated Learning Setting 21
2.5 A Federated Learning Algorithm 23
2.6 Applicability 26
2.7 Systems Issues 28
 
3 Prototype 33
3.1 Predictive Maintenance Primer 33
3.2 Why Federated Predictive Maintenance 35
3.3 The CMAPSS Dataset 36 
3.4 Modeling the CMAPSS Data 38
3.5 The Federated CMAPSS Model 40
3.6 Product: Turbofan Tycoon 43
 
 
 
 
 
 
 
 
 
 



 
 
4 Landscape 49
4.1 Use Cases 49
4.2 Users 55
4.3 Tools and Vendors 58
 
5 Ethics 63
5.1 Privacy 63
5.2 Consent 68
5.3 Environmental Impact 70
 
6 Future 71
6.1 Reducing Communication Costs 71
6.2 Personalization 74
6.3 Sci-fi Story: Merrily, Merrily, Merrily, Merrily 76

7 Conclusion 81

8 Appendix: federated.py 83





Introduction  13

 
 
 
chapter 1
Introduction

To train a machine learning model you generally need to 
move all the data to a single machine or, failing that, to a clus-
ter of machines in a data center. This can be difficult for two 
reasons.

First, there can be privacy barriers. A smartphone user 
may not want to share their baby photos with an application 
developer. A user of industrial equipment may not want to 
share sensor data with the manufacturer or a competitor. 
And healthcare providers are not totally free to share their pa-
tients' data with drug companies.

Second, there are practical engineering challenges. A 
huge amount of valuable training data is created on hardware 
at the edges of slow and unreliable networks, such as smart-
phones, IoT devices, or equipment in far-flung industrial fa-
cilities such as mines and oil rigs. Communication with such 
devices can be slow and expensive.

This research report and its associated prototype introduce 
federated learning, an algorithmic solution to these problems.

In federated learning, a server coordinates a network of 
nodes, each of which has training data that it cannot or will 
not share directly. The nodes each train a model, and it is that 
model which they share with the server. By not transferring 



14  Introduction

the data itself, federated learning helps to ensure privacy and 
minimizes communication costs.

In this report, we discuss use cases ranging from smart-
phones to web browsers to healthcare to corporate IT to video 
analytics. Our working prototype focuses in particular on in-
dustrial predictive maintenance with IoT data, where training 
data is a sensitive asset.

SERVER

NODE
NODE NODE

NODE

figure 1.1 .In federated learning, a network of nodes shares mod-

els rather than training data with a server.



The Problem and the Solution  15

 
 
 
chapter 2
The Problem and the Solution

In this chapter, we will describe three hypothetical scenar-
ios that seem very different, but which share characteristics 
that make them a great fit for federated learning. We’ll then 
introduce a specific federated learning algorithm, and ex-
plain how it helps. Finally, we’ll address the practical systems 
problems that complicate its use.

2.1 User Data on Smartphones

Pear

Hey! I’ve got
the tickets

Can’t wait!

Sub: Important!

figure 2.1 Smartphones generate a wealth of data including 

pictures, text messages and emails.



16  The Problem and the Solution

Our first scenario concerns Pear, a company that makes a 
popular smartphone. Users love it. They use it to take pictures 
of their kids, email their colleagues, and write quick text mes-
sages to friends. All of this activity on millions of Pear phones 
generates data that, if it were combined, would allow Pear to 
train models to make its phones even better.

Pear’s phones could learn to spot particularly good baby 
photos and proactively offer to share them with friends and 
family. They could make it easier to write emails that are more 
likely to receive quick replies. And they could make compos-
ing text messages even quicker and easier by accurately sug-
gesting the next phrase, whatever the language.

The difficulty is that many users are not comfortable 
sharing the training data these examples would require 
(baby photos, work emails, personal text messages) with a 

Pear can help you

make an album 
of your child to 

share easily 
with grandma

write better
texts

write better 
emails

it just needs access to your data...

I’ve got

Fwd: Important!

ANALYZING

Use ‘i think’ 
lessHey! Ive get

the tickets

figure 2.2 Smartphone manufacturers could use that data to 

personalize a user’s experience—but they require access to do so.



The Problem and the Solution  17

multinational corporation. Even among those who are not 
sensitive to privacy concerns, some will still refuse to share 
their data because they don’t want to waste their bandwidth 
uploading data that will primarily benefit a private company. 
And among those who do choose to share their data, that data 
is often protected by laws that place significant administra-
tive burdens on companies that wish to use it.

Pear understands these concerns, and has earned a repu-
tation as a company that takes privacy more seriously than its 
competitors. How can Pear add new predictive features to its 
phones while respecting its users' privacy?

2.2 Predictive Maintenance
TurbineCorp sells turbines for installation in power sta-

tions. These machines are profitable to run but expensive to 
maintain, and very expensive to repair. TurbineCorp wants to 
differentiate itself from its competitors by offering customers 
access to a predictive model of turbine failure.

This model would use readings from sensors installed on 
each turbine as input, and return an estimate of its remaining 
useful life. A good model would reduce the likelihood of an 
expensive failure by prompting the owner to maintain a tur-
bine before it fails. It would also help avoid the almost equally 
expensive mistake of maintaining a turbine too early and too 
often.

This model needs training data—but testing lots of tur-
bines until they failed in order to acquire that data would be 
an expensive endeavor for TurbineCorp. It would be less cost-
ly for TurbineCorp if its customers were to send it such data. 
More importantly, the failures actual customers experience 



18  The Problem and the Solution

will be more representative of real-world use than those Tur-
bineCorp would see in factory experiments. In short, training 
data acquired from customers would be both cheaper and 
better.

But there are several problems. Some of their customers 
are reluctant to share details about turbine failures in their fa-
cilities. Furthermore, some operate in countries such as Chi-
na, where power stations are considered strategic assets, and 
are therefore legally prevented from exporting sensor data. 
And, as a practical matter, the volume of data generated by the 
dozens of sensors on each turbine is enormous, which makes 
streaming it back to TurbineCorp an engineering challenge.

How can TurbineCorp build an accurate predictive main-
tenance model without direct access to the best and cheapest 

figure 2.3 Turbine sensor data could be used to train a predictive 

maintenance model.



The Problem and the Solution  19

training data? (This scenario is the focus of our prototype, dis-
cussed in 3 Prototype.)

2.3 Medical AI
Nephrodyne, a medical device company, wants to offer 

a wearable device that detects kidney problems in users be-
fore they become acutely serious. The company knows from 
lab trials that its prototype rule-based device performs fair-
ly well, but it does not have the accuracy required for use by 
nonexperts outside a hospital. Nephrodyne is confident that a 
machine learning model would perform even better than the 
rule-based model, and its business team has determined that 
Germany would be the best place to launch this product.

The problem is, as a private company based in the Unit-
ed States, Nephrodyne is having trouble getting access to 

figure 2.4 Wearable medical devices collect data that could  

save lives.

ANALYZING...

n

Nephrodynen



20  The Problem and the Solution

the representative training data required to build the model. 
Data protection regulations in the European Union place sig-
nificant regulatory burdens on companies working with per-
sonal data, especially those outside the EU. Likewise, HIPAA 
regulations in the US make it difficult to work with US patient 
data (and in any case, that American patient data would differ 
systematically from that of the target customers in Germany). 
And finally, anywhere in the world, but especially in Germany, 
patients are typically unwilling to share their personal data 
with a private medical device company. Patients do, however, 
share their data with their healthcare providers.

Given these constraints, how can Nephrodyne work with 
multiple healthcare providers to train the accurate model it 
needs to build its new product?

NODE

?
? ?

DATA

NODE

DATA MODEL

NODE

DATA

figure 2.5 Federated learning helps when the data cannot  

be moved.



The Problem and the Solution  21

2.4 The Federated Learning Setting
These three scenarios share two common characteristics. 

These characteristics comprise what machine learning ex-
perts call the setting of federated learning.

First, the most representative (and cheapest) training data 
cannot be moved away from its source. This characteristic is 
the most important for identifying a problem that might be a 
good fit for federated learning. The reasons for this constraint 
can include privacy concerns, regulatory impediments, and 
practical engineering challenges.

Second, each source of potential training data is different 
from every other. Each of these sources will show biases rela-
tive to the overall dataset. For example, Pear wants to predict 
which emails will receive replies, but perhaps one user almost 
always gets a reply, and one user almost never does. Neither 

NODE
DATA

NODE

NODE

DATA

DATA

MODEL
?
? ?

figure 2.6 Federated learning helps when the data on each node 

is different.



22  The Problem and the Solution

user is typical. Or perhaps two of TurbineCorp’s customers 
stress their turbines in different ways and observe different 
failure modes. And maybe one of Nephrodyne’s users simply 
doesn’t have much data. The fact that any one source’s data is 
biased and small relative to the total dataset means that it’s 
difficult to build a good global model based on data from a 
single source.

Here we’ll introduce the term node, used in this report to 
refer to a source of training data. A node might be a physical 
device, a person, a facility or other geographic location, a le-
gal entity, or even a country. If each node will not or cannot 
share its data directly, or if you are concerned that any one 
node might produce a biased subset of data, then you have a 
problem that is potentially a good fit for federated learning!
 

# Distributed Machine Learning

Federated learning is one example of distributed 
machine learning, but there exists another variety that 
is currently more common and more mature: distributed 
machine learning in the datacenter.1 In this setting, most 
of the practical constraints of federated learning go away. 
In particular, we are free to move training data between 
nodes, and communication between them is relatively 
fast and cheap.

Algorithms for distributed machine learning in the 

1 One of the earliest uses of the term "federated learning" draws this 

distinction in its title: see Jakub Konečný, Brendan McMahan, and 

Daniel Ramage’s paper "Federated Optimization: Distributed Optimi-

zation Beyond the Datacenter" (https://arxiv.org/abs/1511.03575).



The Problem and the Solution  23

absence of the constraints of federated learning differ 
in various ways that trade off speed, complexity, and 
accuracy. In most circumstances, it’s best to let the tool 
you’re using decide these algorithmic details. The cluster 
computing framework Apache Spark supports distributed 
machine learning out of the box and works well for many 
use cases. Dask, a library for parallel computing in Python, 
also supports machine learning and may be a good choice 
for custom use cases or experimentation. Deep learning 
packages like TensorFlow and PyTorch provide distribut-
ed implementations and can additionally be layered on 
management platforms like YARN and Kubernetes2 for 
robustness and fault tolerance.

2.5 A Federated Learning Algorithm
So, how does federated learning work?
The crucial insight is to realize that the nodes, which are 

the sources of training data, are not only data storage devices. 
They are also computers capable of training a model them-
selves. The federated solution takes advantage of this by train-
ing a model on each node.

The server first sends each node an instruction to train a 
model of a particular type, such as a linear model, a support 
vector machine (SVM), or, in the case of deep learning, a par-
ticular network architecture.

On receiving this instruction, each node trains the model 
on its subset of the training data. Full training of a model would 

2 E.g., TonY (https://github.com/linkedin/TonY) and Kubeflow 

(https://www.kubeflow.org/).



24  The Problem and the Solution

1. Nodes receive model from server and start training.

NODE

Local
Model

DATA

NODE

Local
Model

DATA

NODE

Local
Model

DATA

SERVER

2. Nodes send partially trained models to server.

Local Model

NODE

Local Model

NODE

Local Model

NODE

SERVER

3. The server combines those models to make a federated model.

Federated Model

SERVER

4. The federated model is sent to the nodes. Repeat as necessary.

NODE

Local
Model

DATA

NODE

Local
Model

DATA

NODE

Local
Model

DATA

SERVER

figure 2.7 A federated learning algorithm.



The Problem and the Solution  25

require many iterations of an algorithm such as gradient de-
scent, but in federated learning the nodes train their models 
for only a few iterations. In that sense, each node’s model is 
partially trained after following the server’s instruction.

The nodes then send their partially trained models back to 
the server. Crucially, they do not send their training data back.

The server combines the partially trained models to form 
a federated model. One way to combine the models is to take 
the average of each coefficient, weighting by the amount of 
training data available on the corresponding node. This is 
called federated averaging.

The combined federated model is then transmitted back to 
the nodes, where it replaces their local models and is used as 
the starting point for another round of training. After several 
rounds, the federated model converges to a good global mod-
el. From round to round, the nodes can acquire new training 
data. Some nodes may even drop out, and others may join.

This algorithm makes it possible to train a model using 
all the training data spread across the nodes, without moving 
that data off the nodes.

It is difficult (although not in general impossible) for the 
server to reconstruct the training data from the trained mod-
els it receives from each node. We will discuss this possibility 
in 5 Ethics, but for now, we simply note that the server does 
not have or need access to the training data. Indeed, no train-
ing occurs on the server, so it doesn’t need specialized train-
ing hardware such as a GPU.

The amount of data the nodes have to send to the server 
is much less than it would be if the training data were shared 



26  The Problem and the Solution

directly. This is because a machine learning model is general-
ly much smaller than the data on which it was trained.

2.6 Applicability
Federated learning is more complicated than working 

with all the data on one machine. If moving the data is an 
option, you should try that before you try federated learning. 
But even if moving the data is not an option, there are a few 
things you should consider before you take the leap.

2.6.1 The Data on the Nodes
Federated learning gives you access to more training data. 

But if that extra training data won’t help you make better pre-
dictions than the data you already have, then federated learn-
ing will not help. For more training data to help, two things 
must be true.

First, there must be room for improvement. If the model 
structure lacks the flexibility to capture the patterns in the 
training data, then it doesn’t matter how much training data 
you throw at it.3

Second, the additional training data must be predictive 
of the shared task. This is often assumed in non-federated 
learning. For example, a language model trained with the 
text of 1,000 English books will be better than a language 
model trained with 10 English books. But the nodes in a fed-
erated model could be so completely different or uncorrelat-
ed that the data they have to offer is not helpful. Two nodes 

3 You can check if this is true by constructing a learning curve using 

the data you do have.



The Problem and the Solution  27

are unlikely to train a good language model together if one 
of them uses 10 English books and the other uses 10 Japanese 
books.

As a more realistic example, suppose the potential nodes 
of a federated network are businesses that want to predict 
how many servers they will need next year. It’s quite possible 
that the server demands of these businesses are driven by the 
same external factors, and therefore correlated. In this case 
federated learning may help. But if their server demands are 
uncorrelated, each business will get results that are just as 
good (or better), with less expense, by building its own model 
using only its own data.

2.6.2 Walk Before You Can Run
Before doing something new in machine learning, it is 

a best practice to establish a well-understood performance 
benchmark. In the context of federated learning, that means 
training a non-federated model on representative proxy data. 
For example, you might first train a prototype predictive text 
model on a Wikipedia corpus, or a predictive maintenance 
model on laboratory stress tests.

This benchmark is valuable because it gives you an idea of 
the performance you can expect from a federated model be-
fore you build it. That’s because, while federated learning is 
almost as good as having direct access to all the training data, 
it is not usually better. The non-federated model therefore 
places an upper limit on the performance of a federated mod-
el trained on the same data.

The only situation in which a federated model could beat 
a non-federated benchmark is if, in the move to federated 



28  The Problem and the Solution

learning, you gain access to more or qualitatively better train-
ing data. This is not necessarily a rare situation, but relying on 
it is a risk you should carefully assess.

2.6.3 Not Only Deep Learning
It is possible to train any kind of machine learning model 

using federated learning, provided there exists a meaningful 
way to combine two models. This is true of at least linear mod-
els, SVMs, and neural networks. In particular, despite what 
you may have heard, federated learning is not only applicable 
to deep learning.

In our prototype we do use a neural network, but the most 
prominent documented production example of federated 
learning (see 4.2.1 Firefox) uses an SVM. Each type of model 
has its usual advantages and disadvantages in a federated set-
ting (flexibility, training data requirements, speed, etc.). Your 
choice may be restricted in practice if the nodes are unusual 
edge hardware (see 4.3 Tools and Vendors).

2.7 Systems Issues
An attempt to use any algorithm in the real world will 

face practical challenges due to the hardware, software, and 
network. Computer scientists call these systems issues. Some-
times they are mere details that can be addressed easily, but 
sometimes they render an elegant algorithm useless in prac-
tice. It is therefore important to be aware of them.

In some contexts where federated learning would oth-
erwise make sense, it can be unsuitable because of its pow-
er demands. For example, Pear’s smartphone users may not 
want to dedicate a portion of their battery to training a neural 



The Problem and the Solution  29

network in the background. And training isn’t the only poten-
tial power sink: communication over a cellular network us-
ing the radio antenna is a particularly power-hungry task on 
a smartphone.4 Federated learning is less demanding in this 
respect than a strategy that involves transmitting all the train-
ing data back to the server, but it is more demanding than 
shipping a static model to the phone just once. This trade-off 
may be worth making if the federated model is much better 
than a static model trained once on unrealistic data, but you’ll 
need to consider whether this is the case.

There’s also the possibility that a node may drop out. The 
most obvious example of this is a smartphone user who turns 
their phone off, but a healthcare provider participating in 

4 Power consumption and communication costs are closely related. 

See 6.1 Reducing Communication Costs for more on this topic.

figure 2.8 Training models on client devices uses power.

SERVER

NODE

TRAINING 
MODEL

NODE

TRAINING 
MODEL

NODE

TRAINING 
MODEL



30  The Problem and the Solution

Nephrodyne’s network or a power station participating in Tur-
bineCorp’s network might also choose or be forced to cease 
participation. The individual nodes cannot be counted on to 
have the uptime you can expect of a server in a datacenter. If 
federated learning is distributed across more than a handful 
of nodes, you can pretty much guarantee at least one of them 
will become temporarily or permanently unavailable at some 
point. Federated learning must be robust to this possibility.

Finally, even with plenty of power and no dropouts, the 
server is faced with the unavoidable reality that some nodes 
are likely to be stragglers that take longer to do their work, 
because they have either slow hardware or a slow network 
connection. Can this risk be reduced? At what point should 
the server abandon hope of receiving an update from a partic-
ular node? How should it handle an update if it arrives after 
the server has already combined the updates from the other 

figure 2.9 Some nodes may drop out of the network.

NODE

NODE

SERVERN
O

D
E



The Problem and the Solution  31

nodes? The answers to these questions depend on the details 
of your system and the particular federated learning algo-
rithm you are using. In some cases, they are also the subject of 
current research (see 6 Future).

In any production application of federated learning it is 
essential to consider the real-world issues you will face and, 
where possible, mitigate the damage they do. In the next 
chapter we describe how we built a working product using 
federated learning. Our prototype avoids some of these sys-
tems issues, but is forced to deal with others.
 

# Machine learning on the edge

In order for federated learning to be possible, the nodes 
must be able to train a model. The ability to do inference 
(i.e., apply a pretrained model) is not sufficient. Training 

figure 2.10 Some nodes may take longer to do their share of  

the work.

NODE

NODE

NODE

SERVER



32  The Problem and the Solution

is not always possible on edge devices such as specialized 
IoT hardware. This is particularly true in the case of neural 
networks. This difficulty is due to the current state of the 
toolchain rather than anything fundamental, and we 
expect that limitation to go away in the near future.5

But even if you can’t train on edge devices (and 
therefore can’t use them for federated learning), machine 
learning inference on edge devices is still a very exciting 
possibility. Among the many compelling arguments for 
shifting the burden of data processing (including featur-
ization and inference) to edge devices is cost. You save 
money because the owners of the edge devices (i.e., your 
users) provide the compute resources.

In a sense, along with the move to the cloud (and 
serverless in particular), moving machine learning 
to edge devices is part of a general trend toward min-
imizing the long-lived infrastructure of a system.6  

5 See 4.3.4 Mobile and Edge and "What Does It Take to Train Deep 

Learning Models On-Device?" (https://petewarden.com/2018/10/04/

what-does-it-take-to-train-deep-learning-models-on-device/).

6 See "How We Built a Big Data Platform on AWS for 100 Users for 

Under $2 a Month" (https://read.acloud.guru/how-we-built-a-big-

data-analytics-platform-on-aws-for-100-large-users-for-under-2-

a-month-b37425b6cc4) for an example of migration of a backend 

system to serverless and the "AI frontend" to TensorFlow.js running 

on user devices. Together these changes resulted in a cost reduction 

of 3,700x.



Prototype  33

 
 
 
chapter 3
Prototype

Turbofan Tycoon, the prototype we created for this report, 
is a federated learning solution to one of the scenarios we saw 
in the previous chapter: training a predictive maintenance 
model using real-world customer data. In this chapter we de-
scribe how we selected the problem, prepared the data, built 
the federated model, and created the user interface. If you’d 
like to skip the predictive maintenance part of the chapter 
and get straight to the federated learning, jump ahead to 3.5 
The Federated CMAPSS Model.

3.1 Predictive Maintenance Primer
If a piece of equipment generates revenue, its failure costs 

money. The costs multiply if the failure makes a production 
line stop, wastes time-sensitive raw materials, or forces cus-
tomers to wait for their orders. The equipment may fail in a 
way that requires it to be scrapped completely, or even in a 
way that damages other equipment. The owner of an expen-
sive piece of equipment maintains it with the hope of avoid-
ing these costly failures.

But maintenance also causes downtime. This down-
time is planned, so it is hopefully less expensive than un-
planned downtime due to equipment failure, but it is not free. 



34  Prototype

Undermaintenance and overmaintenance are therefore both 
expensive mistakes. How can we avoid them?

The simplest maintenance strategy is corrective mainte-
nance. This is a fancy technical term that means "waiting for 
the equipment to break." This is what you’re doing when you 
take your car to the repair shop after the engine catches fire. 
This strategy is suboptimal because it undermaintains.

The next step up the evolutionary tree is preventative main-
tenance. This is servicing on a schedule. The schedule is fixed 
and does not depend on detailed observations of the current 
state of your particular piece of equipment. Rather, the sched-
ule is derived from average experience. Taking your car in for 
a service every 10,000 miles as recommended by its manufac-
turer is an example of preventative maintenance.

figure 3.1 Corrective maintenance waits for a failure. Preventa-

tive maintenance maintains on a schedule. Predictive mainte-

nance uses machine learning to decide when to maintain.

20

CYCLES

180

RUNNING

STATUS

Predicted
Remaining 

LifeMODEL
180

CYCLES

180

MAINT.

STATUSCYCLES

200

FAILED

STATUS

Maintenance
Every



Prototype  35

In order for preventative maintenance to work, its sched-
ule must necessarily be conservative. So, while corrective 
maintenance undermaintains equipment, preventative main-
tenance tends to overmaintain.

The most intelligent maintenance schedule is predictive 
maintenance. Here, a machine learning model is applied to 
your particular piece of equipment to predict its remaining 
useful life (RUL). When that RUL estimate drops below some 
threshold, you can intervene by maintaining or replacing the 
equipment.

If the machine learning model at the heart of a predictive 
maintenance strategy is good, this most advanced approach 
can save a huge amount of money relative to the alternatives.

3.2 Why Federated Predictive Maintenance
It only makes sense to apply federated learning to ma-

chine learning problems where the training data is difficult or 
impossible to move (see 2.6 Applicability). We chose a predic-
tive maintenance scenario for our prototype because it really 
is sometimes subject to this constraint.

As we discussed in the previous chapter, if a manufacturer 
wants to build a predictive model to share with its custom-
ers, then the training data that belongs to those customers 
is the gold standard. It is more diverse and representative of 
real-world use than data the manufacturer collects in labora-
tory stress tests and simulations. Assuming they can access it, 
collecting customer data is also cheaper for the manufacturer.

But sometimes competitive pressures can result in a 
business being unwilling to share data with suppliers (who 
may themselves be competitors, or may be suppliers to 



36  Prototype

competitors). There can also exist legal constraints that pre-
vent a facility of strategic importance, such as a power station 
or military base, from exporting its data.7 Even if a facility is 
willing and legally able to share data with a supplier, predic-
tive maintenance data can be so voluminous that this goal 
presents a practical engineering challenge for the network. 
This challenge can be particularly acute in industries such 
as mining, when the facilities are in remote locations or the 
equipment is mobile.

The fact that federated learning makes it possible to train 
on a huge amount of private data while only sending small 
models over the network therefore makes its application to 
industrial predictive maintenance a very exciting possibility.

3.3 The CMAPSS Dataset
To build our prototype, we used the CMAPSS turbofan 

degradation dataset. A turbofan is a kind of jet engine. This 
dataset is to the predictive maintenance community as Ima-
geNet or MNIST is to the computer vision community.8

We used data for 400 engines, each of which was allowed 
to run until failure. There were 24 time series (21 sensor read-
ings and 3 operational settings) for each engine. The sensor 
readings are temperatures, pressures, and fan rotation speeds 
for various components of the jetfan. The task was to predict 

7 See "Data Protection: The Growing Threat to Global Business" 

(https://www.ft.com/content/6f0f41e4-47de-11e8-8ee8-cae73aab 

7ccb), The Financial Times, May 13, 2018.

8 It is available from the NASA website (https://ti.arc.nasa.gov/tech/

dash/groups/pcoe/prognostic-data-repository/).



Prototype  37

se
tt

in
g_

1
T5

0
P

30
ep

r
N

R
f

fa
rB

P
C

N
fR

_
dm

d
T2

P
2

N
f

P
s3

0
N

Rc
ht

B
le

ed
W

31
T2

4
se

tt
in

g_
2

P
15

N
c

ph
i

B
P

R
N

f_
dm

d
W

32
T3

0
se

tt
in

g_
3

figure 3.2 Sensor data for one turbofan.



38  Prototype

the remaining useful life of the engine at a randomly chosen 
time before failure using the available history of sensor read-
ings and settings. We used 16 of the 24 sensors and settings in 
constructing our model.
 
3.4 Modeling the CMAPSS Data

The CMAPSS training data can be modeled in several ways 
and, as discussed in 2.6.3 Not Only Deep Learning, federated 
learning does not in itself place many restrictions on the kind 
of model we build.

Because the focus of this report is federated learning rath-
er than predictive maintenance, and because federated learn-
ing gives us considerable freedom to choose our modeling ap-
proach, our prototype uses the simplest modeling approach 
that performs significantly better than a naive model. A naive 
model of the CMAPSS dataset predicts RUL by assuming that 
every engine in the test set has a total useful life of 181 time 
steps (the median life of engines in the training set).9 This na-
ive model has a root mean squared error of 94.2.

The simplest modeling approach is to treat each time 
step as a training example. In this approach, an engine that 
has a total useful life of 314 time steps becomes 314 training 

9 In a more familiar classification context, the naive model is usually 

a dummy classifier that always predicts the most prevalent class 

in the training set. Such a dummy classifier will have an accuracy 

equal to the prevalence of that class. At a minimum, a trained model 

should have an accuracy greater than this. (For example, if 90% of 

emails are spam, a spam classifier with an accuracy less then 90% 

is doing worse than chance!)



Prototype  39

examples. The features are the instantaneous values of the 16 
sensors at each time, and the target variable is the remaining 
useful life at each time. The model does not have access to the 
history of the sensor data. It can only use the sensor readings 
at each instant to predict the remaining useful life.

Despite its simplicity, this formulation results in a model 
that is comfortably better than the naive model, so we use it 
rather than, e.g., modeling the full sequence with a recurrent 

figure 3.3 Each time step is treated as a training example.

MODEL

Engine 131

CYCLE SENSORS

5.712 120 198...

8.113 80 197...

6.314 75 196...

...... ... ......

RUL

SENSORS

5.7 120 198...

RUL

SENSORS

8.1 80 197...

RUL



40  Prototype

neural network.10 The 400 engines in the set became 58,798 
training examples and 16,245 test examples, each with 16 fea-
tures. We standardized the features and target variable for 
numerical stability.

The model that learns how to predict the RUL from the 16 
input features is a simple neural network with one hidden lay-
er. The non-federated version of this model (i.e., trained with 
direct access to all the data on a single machine) has a root 
mean squared error of 62.4.

3.5 The Federated CMAPSS Model
In our federated version of the problem, we randomly 

partitioned the 320 engines that comprised the training set 
across 80 nodes. You can think of each of the nodes as a facto-
ry that has observed four turbofan failures. Assuming a facto-
ry is unwilling or unable to share the sensor data from these 
failures, it can choose from four maintenance strategies:
• A corrective maintenance strategy (waiting for the en-

gines to fail) 

10 See FF04: Summarization for more on recurrent neural networks. 

For the particular problem of modeling the time until an event (e.g., 

customer churn, engine failure), we like the  "Weibull Time-to-Event 

RNN" (https://ragulpr.github.io/2016/12/22/WTTE-RNN-Hackless-

churn-modeling/). But some machine learning experts have found 

that an autoregressive feed-forward neural network (i.e., a regu-

lar or convolutional neural network) also works well for sequence 

problems. See "When Recurrent Models Don’t Need to be Recurrent" 

(https://bair.berkeley.edu/blog/2018/08/06/recurrent/).



Prototype  41

• A preventative maintenance strategy (maintaining at 
a fixed time, hopefully some time before the average 
engine fails)

• A local predictive maintenance machine learning model, 
trained on the factory’s four failed engines

• A federated predictive maintenance machine learning 
model, trained on the collective data of all 80 factories 
using federated learning
To train the federated model we wrote federated.py, an im-

plementation of federated averaging, in about 100 lines of Py-
Torch. This implementation is a simulation of federated learn-
ing in the sense that no network communication takes place. 
The server and the nodes all exist on one machine. However, 
it is an algorithmically faithful implementation: the server 
and nodes communicate only by sending copies of their mod-
els to each other.

This approach makes it possible to experiment rapidly 
with very large numbers of nodes, without getting bogged 
down in network issues. And despite the simplification, we 
can reproduce many of the challenges discussed in 2.7 Sys-
tems Issues. For example, we can dynamically flag nodes 
as non-participants (which means they train on their local 
data, but do not send or receive model updates) or failed 
(which means they stop training altogether). We show the 
most important few lines of of  federated.py  in 8 Appendix:  
federated.py.

The models trained on each node (and the federated mod-
el that is their average) are simple feed-forward neural net-
works with one hidden layer. Including biases, the models are 
defined by 865 weights. The federated model has a final root 



42  Prototype

mean squared error of 64.3. This is almost as good as the 62.4 
of the non-federated model trained on the same data without 
federated learning (and much better than the 94.2 of the naive 
model).

The federated model requires around 10 rounds of federat-
ed learning to reach its final error (where each node trains for 
one epoch per round). This is slower than the non-federated 
model. We show the loss curve in figure 3.4. The character-
istic sawtooth shape of the loss curves of the nodes is due to 
their training between rounds of communication.

We marked one node in our network as a non-participant. 
This is a node that trains as often as every other, but does 
not contribute to or benefit from the averaging process. This 
model is therefore effectively a non-federated model trained 

figure 3.4 Mean squared error loss (in standardized units) for 

the federated model, 79 nodes that participate in the federated 

model, and 1 node that does not.

Participant Node
Non-Participant Node
Federated Model

GL
O

BA
L 

TE
ST

 S
ET

 M
SE

FEDERATED ROUND

1.4

1.2

1.0

0.8

0.6

0 5 10 15 20 25 30



Prototype  43

on just four engines. With such a small amount of training 
data, it is vulnerable to overfitting. Its exact performance is 
very sensitive to exactly which four engines it uses (some are 
more typical than others, and result in a model that general-
izes fairly well, while others result in a catastrophically bad 
model). But regardless of this randomness, it is almost always 
significantly worse than the federated model. We show the 
loss curve for the non-participant model we use as the "local" 
model in the prototype in figure 3.4.

3.6 Product: Turbofan Tycoon
We knew that the model trained using federated learning 

made better predictions. The challenge for the frontend was 
how to communicate that fact to the prototype user in a form 
more visceral than a static chart. Our solution was to make 
the user a factory owner in charge of four running turbofans. 
We simulate a running turbofan by playing through the data 
step by step. The user decides the strategy for when a turbo-
fan is maintained, and the effectiveness of that strategy deter-
mines the factory’s profit. By simulating the lifespan of each 
turbofan we made the prototype dynamic, and by assigning 
a dollar value to accurately predicting that lifespan we were 
able to dramatize the payoff of federated learning.

In Turbofan Tycoon, every time a turbofan completes a 
cycle (one hour) the factory makes $250. If a turbofan breaks 
down it costs $60,000 to repair, and it takes 60 hours to get it 
running again. Turbofan maintenance can head off a break-
down, but it costs $10,000 and takes 20 hours to perform. 
When maintenance is performed is determined by which of 



44  Prototype

the four maintenance strategies the user selects: corrective, 
preventative, local predictive, or federated predictive.

3.6.1 The Life of a Turbofan
We visualize the turbofan lifespan with a collection of 

graphs. On the left we show the data from the 16 sensors used 
by the local and federated predictive models to predict the re-
maining useful life of the turbofan. If you watch the sensor 
data very closely and turn the simulation speed down very low, 
you, like the predictive models, may be able to make a guess 
about when a turbofan failure is coming, but it’s a tough job 
(one better left to algorithms). We included the sensor data 
because we wanted to give a sense of the information the pre-
dictive models are distilling into strategy.

On the right side of the turbofan slot is a visualization of 
the maintenance strategy. For the corrective and preventative 

figure 3.5 The Turbofan Tycoon prototype.



Prototype  45

strategies, there isn’t a whole lot to see. For corrective, it’s sim-
ply a line marking how many cycles that turbofan has gone 
through. For preventative, the preselected threshold (193 
hours) at which maintenance is performed is shown as a dot-
ted line. The local predictive and federated predictive graphs 
are richer. For each cycle each model predicts the remaining 
useful life of the turbofan. Maintenance is performed when 
that prediction drops below 10 cycles. The local predictive 
and federated predictive strategy graphs are visualized in 
the same way but differ in their predictions because of the 
different amounts of data they are trained on. The federated 
predictive model’s larger training dataset makes it the more 
accurate predictor.

To guide the user through the different maintenance strat-
egies, we set up the simulation so that they become available 

figure 3.6 The turbofan visualization shows the sensor data and 

maintenance strategy.



46  Prototype

one by one, as their requirements are satisfied. These require-
ments (four turbofan failures for data to upgrade to preven-
tative, hiring a data scientist to upgrade to local predictive, 
getting a federation offer to upgrade to federated predictive) 
have some basis in the real world but are vastly simplified 
so as not to distract from the prototype’s main purpose: to 
demonstrate the effectiveness of the different strategies.

3.6.2 Visualizing Strategy Effectiveness
The effectiveness of each strategy is visible in the factory’s 

maintenance and failure counts. We further condense each of 
those measurements into one number: profit. The formula for 
profit calculation is the active turbofan cycles multiplied by 
the profit per cycle minus the total failure and maintenance 
costs for each turbofan slot in the factory. Because of how it’s 

figure 3.7 More advanced strategies become available as the 

simulation progresses.



Prototype  47

calculated, the factory’s profit shows the effectiveness of each 
strategy over time.

As a measure of the effectiveness of the different mainte-
nance strategies, the factory’s profit is only a useful indicator 
in the context of strategy paths not taken. In our prototype, 
these alternate paths are shown as the user’s competitor 
factories. The other factories follow the same upgrade rules 
as your own factory, except they each max out at a different 
strategy level (corrective, preventative, and local predictive). 
As long as you follow the prototype’s strategy upgrade sug-
gestions, the strategy caps on the other factories mean you’ll 
pull away from the pack as the simulation progresses and the 
effectiveness of the federated predictive strategy reveals itself.

figure 3.8 The Factory Scoreboard shows the effectiveness of 

different strategies over time.



48  Prototype

3.6.3 The Simulation Trade-off
Behind the scenes, the simulation works by selecting a 

new random turbofan from the dataset each time mainte-
nance or failure occurs. This gives the simulation a realistic 
variety: some turbofans run over 400 cycles, some cut out at 
150. The law of large numbers means that, over enough time, 
each strategy’s effectiveness will reveal itself. But, just like in 
life, streaks of good or bad luck can make a strategy look more 
or less effective than it actually is (if a factory using the correc-
tive strategy gets a lucky streak of long-lasting turbofans, for 
example). Ultimately we decided the drama of the simulation 
was worth the potential of temporarily misleading results, es-
pecially because it contains a real-world lesson: if your com-
petitor takes the lead with a subpar strategy, don’t panic! Stick 
with what you know is effective, and over time you’ll win out.



Landscape  49

 
 
 
chapter 4
Landscape

In this chapter we discuss use cases for federated learning. 
Most of these are natural and obvious but, for now at least, 
speculative. As a very new technology, federated learning is 
not yet in production use at many companies willing to dis-
cuss their experiences. We share what we’ve learned from the 
exceptions in 4.2.1 Firefox, 4.2.2 Owkin, and 4.2.3 OpenMined. 
Finally, we discuss the tools and vendors you can use if you 
decide to explore federated learning.

4.1 Use Cases
 
4.1.1 Smartphones and Browsers

Machine learning has huge potential to improve the user 
experience with smartphones and the web in general. In part 
that is because the training data is so abundant: users gen-
erate vast amounts of potentially valuable on-device data in 
their normal day-to-day interactions with these devices.

But aside from the practical challenge of getting this data 
off a device with a slow connection, the personal aspect of 
some of this data (what people type, where they travel, what 
websites they visit) makes it problematic. Users are reluctant 
to share this sensitive data, and possessing it exposes tech-
nology companies to security risks and regulatory burdens. 



50  Landscape

These characteristics make it a great fit for federated learning. 
The use case is so compelling that it comes as no surprise that 
Google researchers11 are usually credited with its invention, 
and Samsung engineers have also contributed significant 
ideas.12

This use case is discussed throughout this report, includ-
ing in 2.1 User Data on Smartphones, 4.2.1 Firefox, 6.1 Reduc-
ing Communication Costs, and 6.2 Personalization.

4.1.2 Healthcare
The healthcare industry offers huge financial incentives 

to develop effective treatments and predict outcomes. But 
the training data required to apply machine learning to these 
problems is of course extremely sensitive. The consequences 
of actual and potential privacy violations can be serious. For 
example, Facebook was recently forced to distance itself from 
press reports that it was sharing anonymized data with hospi-
tals,13 and a British hospital was reprimanded for sharing the 
health records of 1.6 million patients with Google DeepMind 

11 https://ai.googleblog.com/2017/04/federated-learning-collabo 

rative.html

12 https://arxiv.org/abs/1712.07473

13 The project is on hiatus so that Facebook can focus on "other 

important work, including doing a better job of protecting people’s 

data." See "Facebook Sent a Doctor on a Secret Mission to Ask Hos-

pitals to Share Patient Data" (https://www.cnbc.com/2018/04/05/

facebook-building-8-explored-data-sharing-agreement-with-hos 

pitals.html), CNBC, April 5, 2018.



Landscape  51

as part of a trial to test an alert, diagnosis, and detection sys-
tem for acute kidney injury.14

By keeping the training data in the hands of patients or 
providers, federated learning has the potential to make it pos-
sible to collaboratively build models that save lives and make 
huge profits. The European Commission’s Innovative Medi-
cine Institute is soliciting proposals to build a federated, pri-
vate, international platform for drug discovery.15

In 2.3 Medical AI we described a wearable medical device 
use case for federated learning (inspired in part by the Goo-
gle DeepMind controversy). In 4.2.2 Owkin we share what we 
learned from our conversation with Owkin, an ambitious and 
advanced startup that makes it possible for healthcare data 
owners to collaborate.

4.1.3 Industrial IoT
As discussed in 3 Prototype, industrial applications of de-

centralized machine learning can be subject to privacy con-
cerns: if the nodes are in competition with one another, they 
may be unwilling to share training data because of what it 
reveals about their operations. Our predictive maintenance 
prototype explores this scenario.

14 See "Royal Free - Google DeepMind Trial Failed to Comply with 

Data Protection Law" (https://ico.org.uk/about-the-ico/news-and-

events/news-and-blogs/2017/07/royal-free-google-deepmind-trial-

failed-to-comply-with-data-protection-law/),  Information Commis-

sioner’s Office, July 3, 2017.

15 https://ec.europa.eu/research/participants/portal/desktop/en/

opportunities/h2020/topics/imi2-2018-14-03.html



52  Landscape

Communication costs are also an issue. The sheer volume 
of relevant sensor data can be a challenge, even for fixed fac-
tory equipment with a stable, fast internet connection. For 
mobile equipment and equipment at remote facilities, such as 
offshore infrastructure or mines, the problem is even harder. 
By transferring models rather than training data (and thereby 
saving considerable bandwidth), federated learning can help.

Federated learning’s use of the computational resources 
of the nodes can also save money. Nodes can be inexpensive 
commodity edge IoT hardware or can even be someone else’s 
financial responsibility entirely (see 4.3.4 Mobile and Edge).

This use case is discussed throughout this report, includ-
ing in 2.2 Predictive Maintenance and 3 Prototype.

4.1.4 Video Analytics
Machine learning is increasingly being applied to video 

data. Applications include home security cameras and baby 
monitors, in-store video for retail analytics, and autonomous 
vehicles. It’s expensive to move lots of video from multiple 
sources over a network.16 If those sources do not have fixed 
connections (such as in the case of autonomous vehicles), it 
can be almost impossible. Assuming you can move the data, 

16 "Why the Future of Machine Learning Is Tiny" (https://petewarden.

com/2018/06/11/why-the-future-of-machine-learning-is-tiny/) tells 

the story of a person with an in-home camera system who experi-

enced significantly higher ISP usage in the month of December than 

in the rest of the year. Why? Because "his blinking Christmas lights 

caused the video stream compression ratio to drop dramatically, 

since so many more frames had differences."



Landscape  53

it can be difficult to store it once you get it to the datacenter 
because of its volume. And when the video is from a home se-
curity device, privacy is also a particular concern. These situ-
ations present engineering and privacy challenges that make 
federated learning a great fit.

4.1.5 Corporate IT
The application of machine learning to corporate data is 

challenging because access to the training data is typically re-
stricted by competitive or legal constraints. If enterprise users 
install software on their own hardware or in their own cloud, 
the developer of that software will find it hard to get training 
data from those users. If the ability to participate in a federat-
ed learning network is added as an (optional) feature to such 

SERVER

figure 4.1 Moving video data to a server requires a lot of  

bandwidth.



54  Landscape

software, the developer can train new intelligent features on 
real user data.

Collaboration tools like Jira and Slack are good examples 
of this. Atlassian (the developer of Jira) does not have direct 
access to the data its users (other companies) generate on local 
installations of Jira. The simplest workaround for Atlassian is 
to train models using data from its own internal Jira instance. 
This data has the virtue of being available, but obviously At-
lassian’s internal use of its product is not typical, and a model 
trained on this data may perform poorly for the average user. 
Federated learning could offer the machine learning teams at 
companies like Atlassian indirect access to the much more 
representative data generated by their paying customers.

figure 4.2 Companies are reluctant to share their internal dis-

cussions with the developers of corporate IT products.

SERVER

S4W

IT team

art



Landscape  55

4.2 Users

4.2.1 Firefox
Google employees have published a huge amount of ac-

ademic research on federated learning, but Google’s public 
discussion of its own production use has so far been very 
high-level. By far the most detailed description of federated 
learning in a production context in any industry is of its use 
in the open source web browser Firefox.17 That article is well 
worth reading if you plan to use federated learning in a pro-
duction setting, but we’ll point out some notable aspects here.

Like all modern browsers, Firefox offers to autocomplete 
URLs as you type them. The exact equation that determines 
the rank of a suggestion currently uses arbitrarily chosen 

17 https://florian.github.io/federated-learning-firefox/

figure 4.3 URL autocompletion in Firefox.

Autocomplete
Model

NODE

Green Tea

NODE

Black Tea

NODE

Ice Tea



56  Landscape

coefficients. These would be better determined by machine 
learning, but Firefox users (understandably) do not want to 
share their browser history with Firefox’s developers. The 
Firefox federated learning project treats the browsers as 
nodes in a federated network that learns the optimal auto-
completion strategy. Users can opt in to participate in the net-
work, but they do not need to share their browser history with 
Firefox.

The Firefox project is also a great demonstration of the fact 
that you don’t need to use deep learning to do federated learn-
ing (see 2.6.3 Not Only Deep Learning). The model is an SVM, 
which gets around the difficulty of training deep models on 
edge devices (see 4.3.2 General-Purpose Tools). This project 
also benefits from Firefox’s built-in telemetry system, which 
handles the network communication.

4.2.2 Owkin
Owkin18 is a French healthcare startup with federated 

learning at the heart of its business model. Owkin sets up 
the hardware and software infrastructure to train models 
onsite at hospitals and other medical research institutions, 
connects these systems into networks, and uses federated 
learning to combine models across institutions working on 
similar problems. For example, it might form a federation 
of hospitals treating patients with a certain medical condi-
tion—say, a certain type of cancer—and research institu-
tions working on therapies for that type of cancer. Owkin 
also uses federated learning to share research models with 

18 https://owkin.com/



Landscape  57

pharmaceutical companies researching therapies for those 
medical conditions.

Owkin uses federated learning to protect the privacy of 
medical data, comply with strong European data protection 
laws, and safeguard commercially sensitive information in 
federations that may include competing pharmaceutical 
companies. It puts substantial resources into security and is 
constantly on the lookout for new threat models. Owkin also 
faces challenges in regularizing models across institutions 
that collect somewhat different types of data. This is part of 
the reason it suits the company to install its own hardware 
and software, to help maintain consistency at edge sites.

Owkin was founded in 2016 and has about 40 employees. 
It currently supports around a dozen hospitals and research 
institutions, and is adding more.

4.2.3 OpenMined
OpenMined19 is a community of open-source developers 

who are working to build tools for secure, privacy-preserving 
machine learning. The core mission of OpenMined is to estab-
lish a marketplace that makes it possible to train models on 
data that is kept private and owned by clients, while allowing 
models to be shared securely amongst multiple owners. To 
achieve these broad goals, the community seeks to combine 
federated learning, differential privacy, and advanced cryp-
tographic techniques in a complete software ecosystem.

The idea is that this three-sided market will enable sources 
of training data to monetize that data while retaining privacy, 

19 https://openmined.org/



58  Landscape

will enable sources of compute power to monetize those cy-
cles for training of models, and will enable users of models to 
pay for the data and compute resources necessary to create 
them. OpenMined needs to do all this while guarding against 
bad actors who seek to violate the privacy of users of the mar-
ketplace, to poison models with bad training training data, 
or to steal models.20 These are ambitious goals! Some of the 
project’s progress is visible in PySyft (see 4.3.1 PySyft).

4.3 Tools and Vendors
At the time of this writing we could not identify any com-

mercial vendors of federated learning solutions. Commercial 
federated learning requires a rigorous approach to preserving 
data privacy, which is still an area of intense research. Fortu-
nately, where there is some level of trust between members of 
a federated network, it is possible to build a federated learn-
ing solution using existing tools.

Federated learning is a combination of machine learning 
and network communication. Rich ecosystems of tools al-
ready exist for doing both, and can be used to build a feder-
ated learning solution. There are also tools that specialize in 
federated learning that aim to make it easier to combine the 
individual parts.

20 See "How to Backdoor Federated Learning" (https://arxiv.org/

abs/1807.00459) by Eugene Bagdasaryan et al.



Landscape  59

4.3.1 PySyft
PySyft21 is an open-source Python library, built by Open-

Mined (4.2.3 OpenMined), for private federated learning. It 
provides abstractions on top of popular machine learning 
libraries that make it easy to move computations to remote 
clients where the data resides. PySyft currently provides first-
class support only for PyTorch, but integration with Tensor-
Flow is on the roadmap.

PySyft is currently under very active development and is 
more of a research platform than a production-ready feder-
ated learning library. Because of its dependence on PyTorch, 
it is not suitable for federated learning on edge devices, mo-
bile devices, or browser-based clients. It is more suitable in 
settings where clients are server-based, with larger resource 
pools, such as private cloud environments where data has a 
single owner but cannot be moved to a centralized location.

4.3.2 General-Purpose Tools
Federated learning requires software that can distribute 

computation across multiple physical machines and man-
age communication between them. Many machine learning 
libraries already provide this functionality and can, in theo-
ry, run on any device with a CPU and a network connection. 
However, the key difference between federated learning and 
distributed machine learning is that the machines that partic-
ipate in federated learning may be heterogeneous, unreliable, 
and highly resource-constrained. The libraries that currently 

21 https://github.com/OpenMined/PySyft



60  Landscape

exist for distributed machine learning were not designed for 
the federated setting and therefore may perform poorly.

We do not expect this functionality gap to last long, though, 
and while performance may vary, there are still some cases to-
day where federated learning can directly leverage existing 
machine learning tools.

4.3.3 Browser-Based
Web browsers are a common interface to billions of client 

devices, each of which has data and computational resourc-
es that can be put to use. Libraries like TensorFlow.js make it 
possible to run machine learning workloads directly in the 
browser, so that a user’s training data never has to leave their 
machine. Additionally, because training happens on the cli-
ent’s machine, the model can still learn even when the user 
has no network connection.

TensorFlow.js is a JavaScript library that provides a Ten-
sorFlow-like API for doing machine learning directly in the 
browser. It supports both training and inference and can 
leverage client-side GPUs for fast computation. The library 
is maintained under the TensorFlow family of projects, but 
shares no code with TensorFlow itself and only provides a 
subset of the full TensorFlow functionality.

4.3.4 Mobile and Edge
Because mobile and edge devices have low computational 

power and small energy budgets, the computations they run 
need to be heavily optimized. This usually means the software 
they run is written in Java or C++, but most existing machine 
learning tools require Python. This gap has led to the creation 



Landscape  61

of several lightweight machine learning libraries that are op-
timized for mobile and have interfaces in Java and C++. Exam-
ples are TensorFlow Lite, Caffe2, and Core ML.

Currently these lightweight libraries only support the in-
ference stage of machine learning. They don’t provide a way 
of computing the model updates on-device, as is required for 
federated learning. One solution is to directly use the full-fea-
tured machine learning libraries that support training and 
provide Java or C++ APIs for mobile development. A second 
option is to develop custom code for updating your federated 
learning model.

Federated learning can be applied to any model type that 
has a proper notion of an incremental update, but among ex-
isting tools deep learning libraries are typically best suited for 
federated learning. Libraries like TensorFlow, Caffe2, MXNet, 

figure 4.4 Browser-based machine learning tools could open up 

more distributed possibilities.



62  Landscape

and Deeplearning4j all make it easy to compute model updates 
(gradients) and provide APIs in C++ and Java that are amena-
ble to mobile development. Using these full-featured libraries 
will not be performant in general, but they may still be viable 
options when on-device resources are less constrained.

While developing customized code is generally undesir-
able, it may be the best or only viable option given the current 
state of federated learning tools. The burden of implementing 
custom deep learning logic may be deemed too high, but sim-
pler solutions like linear models, SVMs, or clustering can be 
done with relatively little custom code. If a federated learning 
solution enables applications that were previously impossi-
ble, even these simple models can provide significant gains.

figure 4.5 Training models on the edge devices is exciting, but 

library support is immature.



Landscape  63

 
 
 
chapter 5
Ethics

5.1 Privacy
The macOS and iOS installer contains a dialog box that 

tells the user:
 

Along similar lines, the European Union’s General Data 
Protection Regulation22 requires that:

22 This informal language is taken from "On Purpose and by 

Necessity: Compliance Under the GDPR" (https://blog.acolyer.

org/2018/03/21/on-purpose-and-by-necessity-compliance-un 

der-the-gdpr/).

Apple believes privacy is a fundamental human right, so 
every Apple product is designed to:
• Use on-device processing wherever possible
• Limit the collection and use of data
• Provide transparency and control over your 

information
• Build on a strong foundation of security

• Data must be collected for a specific purpose.
• That purpose must be one to which the user has 

consented.



64  Landscape

The 2012 White House report "Consumer Data Priva-
cy in a Networked World" argues for a principle of "focused 
collection":

Consumers have a right to reasonable limits on the per-
sonal data that companies collect and retain. Companies 
should collect only as much personal data as they need 
to accomplish [clearly specified purposes]. Companies 
should securely dispose of or de-identify personal data 
once they no longer need it, unless they are under a legal 
obligation to do otherwise.

Most simply, Maciej Ceglowski gave the following advice 
about data to the Strata 2015 audience in his keynote address 

"Haunted by Data":

By keeping data on a device that belongs to the user, fed-
erated learning makes it easier to use machine learning while 
following these (hopefully self-evident) ethical imperatives 
and legal requirements. Because the model owner does not 
have direct access to the data, concerns and liabilities seem 
to fall away.

• The data must be necessary to achieve that purpose.
• It must be deleted when it is no longer necessary for 

any purpose.

• Don’t collect it.
• Don’t store it.
• Don’t keep it.



Landscape  65

But there is a problem with this rosy picture: it is some-
times possible to infer things about the training data from a 
model. This problem is not unique to federated learning—any 
time you share the predictions of a trained model you open 
up this possibility. However, it is worth considering in detail 
in the context of federated learning for two reasons. First, 
preserving privacy is one of federated learning’s main goals. 
Second, by distributing training among (potentially untrust-
worthy) participants, federated learning opens up new attack 
vectors.

The most indirect way to infer information about the 
training data requires only the ability to query the model sev-
eral times. Anyone with indirect access to the model via an 
API can attempt to attack it in this way. This attack vector is 
not unique (or any more dangerous) in federated learning.23 
The usual protection against it is differential privacy. Differ-
ential privacy is a large and mathematically formal field with 

23 See e.g., "Membership Inference Attacks Against Machine 

Learning Models" (https://arxiv.org/abs/1610.05820) by Reza Shokri 

et al. and "Model Inversion Attacks that Exploit Confidence Infor-

mation and Basic Countermeasures" (https://dl.acm.org/citation.

cfm?id=2813677) by Matt Fredrikson, Somesh Jha, and Thomas 

Ristenpart.



66  Landscape

applications far beyond machine learning.24 In a production 
machine learning context, its application generally means 
that the server adds noise to the weights of the model before 
opening it up to users.

In a federated learning setting where the server and nodes 
are justified in trusting each other, this type of attack is the 

24 For a modern, accessible, ML-oriented introduction we recom-

mend "Privacy and Machine Learning: Two Unexpected Allies?" 

(http://www.cleverhans.io/privacy/2018/04/29/privacy-and-ma-

chine-learning.html) by Nicolas Papernot and Ian Goodfellow. For 

a more general overview, we recommend the short and mercifully 

informal three-part series "Understanding Differential Privacy and 

Why It Matters for Digital Rights" (https://www.accessnow.org/un 

derstanding-differential-privacy-matters-digital-rights/).

figure 5.1 It can be possible to infer information about the data 

on a node from the models it sends to the server.

NODE SERVER
Model Update



Landscape  67

only concern. But if the server or nodes are not trustworthy, 
other kinds of attacks are possible.

For example, the server must be able to directly inspect 
the node’s model in order to average it. But for certain classes 
of model, the mere fact that a weight has changed tells you 
a particular feature was present in the training data. For ex-
ample, suppose a model takes a bag of words as features, and 
the tenth word in the vocabulary is "dumplings." If a node re-
turns a model where the tenth coefficient of the model has 
changed, the server or an intermediary may be able to infer 
that the word "dumplings" was present in the training data 
on that node.

figure 5.2 Training data (left) can be reconstructed (right) by 

a malicious node (images taken from "Deep Models Under the 

GAN: Information Leakage from Collaborative Deep Learning" 

(https://arxiv.org/abs/1702.07464) by Briland Hitaj, Giuseppe 

Ateniese, and Fernando Perez-Cruz).



68  Landscape

This attack is more difficult to carry out against modern 
(and more complex) models in practice. The risk can be mit-
igated by differential privacy (again) or secure aggregation. 
The differential privacy approach has each node add noise to 
its model before sharing it with the server.25 Secure aggrega-
tion protocols make it possible for the server to compute the 
average of the node models using encrypted copies which it 
does not have the ability to decrypt. Both these approaches 
add communication and computation overhead, but that may 
be a trade-off worth making in highly sensitive contexts.

To sum up our discussion of privacy: by leaving the data 
at its source, federated learning plugs the most obvious and 
gaping security hole in distributed machine learning. But it is 
not a silver bullet. Differential privacy and secure aggregation 
will both almost certainly be a piece of the security puzzle. 
These techniques are already in production use—but as with 
any computer security risk, adversaries will make progress 
too. Production deployment of federated learning in highly 
sensitive contexts must be done with care. Eliminating the 
many threats to a shared model is a work in progress.

5.2 Consent
A node is surrendering computational resources and, as 

we saw in the previous section, risking the privacy of its data. 
It is therefore hopefully self-evident that you need to get a 

25 See Naman Agarwal et al.'s "cpSGD: Communication-Efficient 

and Differentially-Private Distributed SGD" (https://arxiv.org/

abs/1805.10559).



Landscape  69

user’s consent before making them a node in your federated 
learning network.

But there are more formal, legal arguments for consent. 
The European Union’s General Data Protection Regulation 
doesn’t directly address federated learning (or indeed apply 
worldwide), but it provides a lens through which to make 
decisions about machine learning generally. Among other 
things, the GDPR requires informed and active consent. In-
formed consent is tricky in the context of federated learning 
because the network asks individuals to share an abstraction 
of their data and to give up some of the processing power on 
their devices. These may turn out to be difficult ideas to get 
across in a way that will withstand legal scrutiny.

The requirement to obtain active consent complicates fed-
erated learning. If it is a legal requirement to allow a node to 
withdraw, an active federated learning network must be ro-
bust against this possibility in the algorithmic sense (see 2.7 
Systems Issues). This is in addition to one of the challeng-
es that the GDPR’s "right to be forgotten" poses to machine 
learning in all forms: what happens to the trained model if 
the source of the training data withdraws consent?26

26 See e.g., Section IV.B of "Slave to the Algorithm? Why a Right to 

an Explanation Is Probably Not the Remedy You Are Looking For" 

(http://dx.doi.org/10.2139/ssrn.2972855), by Lilian Edwards and 

Michael Veale.



70  Landscape

5.3 Environmental Impact
Internet-connected devices will be responsible for 20% of 

the world’s electricity consumption by 2025.27 In addition to 
the proliferation of such devices in technologically advanced 
countries, access to the internet is increasingly considered a 
human right.28 With billions of people coming online, it is 
important to consider the environmental impact of those de-
vices and the data centers required to support them.

In this sense, federated learning is good news. By reduc-
ing the amount of information that needs to be sent over the 
network, this approach to distributed machine learning sig-
nificantly reduces the power consumed by edge devices (see 
6.1 Reducing Communication Costs). And by reducing the 
amount of data that needs to be stored in data centers, fed-
erated learning reduces the need for long-lived, climate-con-
trolled infrastructure.

27 "Tsunami of Data Could Consume One Fifth of Global Electricity 

by 2025" (https://www.theguardian.com/environment/2017/dec/11/

tsunami-of-data-could-consume-fifth-global-electricity-by-2025), 

The Guardian, December 11, 2017.

28 http://digitallibrary.un.org/record/845728?ln=en



Future  71

 
 
 
chapter 6
Future

We have already discussed perhaps the most active area 
of federated learning research (5.1 Privacy). In this chapter we 
discuss two more economically and technologically signifi-
cant open questions: how to further reduce communication 
costs and personalize models.

6.1 Reducing Communication Costs
The basic premise of federated learning—transferring the 

models rather than the data—reduces the communication 
costs of distributed training significantly. But reducing data 
transfer even further is an area of active research.

Why is it so important to further reduce communication? 
First, bandwidth (especially upload) is an expensive resource, 
particularly on consumer mobile connections. Users will re-
fuse to participate in a federated network that uses up all their 
bandwidth.

Second, avoiding communication is synonymous with 
conserving power on battery-powered devices. That’s because 
the radio antenna is the most power-hungry part of smart-
phones and specialized edge hardware. It consumes more en-
ergy than a device’s sensors or processor, by a factor of tens, 



72  Future

hundreds, or even thousands.29 Users will refuse to partici-
pate in a federated network that uses up all their battery.

Clearly, then, it’s valuable to reduce data transfer. But 
how? One set of approaches reduces the size of the trained 
model that is transferred to and from each node.30 Options 
to do this include structured updates (where the training 
process restricts the model parameters such that they can be 
parameterized more compactly) and sketched updates (where 

29 See "Why the Future of Machine Learning Is Tiny" (https://petew 

arden.com/2018/06/11/why-the-future-of-machine-learning-is-

tiny/) for more detailed numbers.

30 See "Federated Learning: Strategies for Improving Communica-

tion Efficiency" (https://arxiv.org/abs/1610.05492) by Jakub Konečný 

et al.

figure 6.1 It is sometimes possible to compress the array of  

numbers that define a model, which saves bandwidth.

3.235 9.319 1.143

5.871 6.109 8.764

6.122 9.442 8.216

...

...

...

1.957

4.222

5.455

7.745 4.548 2.154... 7.215

1

0

0

1...

...



Future  73

the model can be trained in the usual way, but is lossily com-
pressed—i.e., quantized—for communication).

Another set of approaches modifies the simple protocol 
defined in 2.5 A Federated Learning Algorithm to reduce the 
number of rounds of communication a given node partici-
pates in. This not only saves on communication by transfer-
ring fewer copies of the model, but speeds up the overall pro-
cess by eliminating the latency associated with establishing 
a connection. Some researchers have proposed eliminating 
rounds by instructing nodes to report back only when they 

figure 6.2 A node that is not participating in a particular round 

of federated learning saves bandwidth.

NODE

NODE

NODE

SERVERback 
in 10



74  Future

have accumulated significant changes to the model.31 Others 
have suggested decreasing the probability that a given node 
is asked to participate in a particular round by the server (per-
haps in proportion to its power or connection speed).32

This is an area in which rapid progress was being made 
even as we wrote this report. We look forward to further ad-
vances that make it easier to use federated learning in parts 
of the world without robust internet infrastructure, and with-
out wasting energy. We expect significant progress in months 
rather than years.

6.2 Personalization
In all the training scenarios we’ve described so far in this 

report, the server’s goal was to use the data on every node to 
train a single global model. But in situations where a node 
plans to apply the model (not just to contribute to its creation), 
it will usually care much more that the model captures the 
patterns in its data than any other node’s. In other words, 
each node will care more about the model’s accuracy on its 
test set than on any other.

If the global model has an appropriately flexible 

31 See "Deep Gradient Compression: Reducing the Communi-

cation Bandwidth for Distributed Training" (https://arxiv.org/

abs/1712.01887) by Yujun Lin et al. and "LAG: Lazily Aggregated 

Gradient for Communication-Efficient Distributed Learning" (https://

arxiv.org/abs/1805.09965) by Tianyi Chen et al.

32 See Takayuki Nishio and Ryo Yonetani’s "Client Selection for 

Federated Learning with Heterogeneous Resources in Mobile Edge" 

(https://arxiv.org/abs/1804.08333).



Future  75

architecture and was trained on lots of good training data, 
then it may be better than any local model trained on a single 
node because of its ability to capture many idiosyncrasies and 
generalize to new patterns. But it is true that, in principle and 
sometimes in practice, the user’s goal (local performance) can 
be in tension with the server’s (global performance).

Of course each node has the option to use their own local 
model for inference if they choose, but it would perhaps be 
better to offer personalized federated models. These models 
would benefit from all the data on the network, but be opti-
mized for application by a particular node. This is an area of 
current academic research. In "Federated Multi-Task Learn-
ing,"33 Virginia Smith and collaborators frame personaliza-
tion as a multi-task problem where each user’s model is a task, 
but there exists a structure that relates the tasks. In "Differ-
entially Private Distributed Learning for Language Modeling 
Tasks,"34 a team from Samsung consider the example of pre-
dictive text on smartphones. They describe training a central 
model for new users, and allowing each user’s model to di-
verge a little from that central model—but not so far that the 
model exhibits "catastrophic forgetting" (which in this con-
text would be, e.g., forgetting standard English because a user 
uses lots of emojis).

We were not able to learn about the details of any non-re-
search use of personalized federated learning, but it is 
doubtless coming soon to smartphones (if it isn’t already in 
production).

33 https://arxiv.org/abs/1705.10467

34 https://arxiv.org/abs/1712.07473



76  Future

6.3 Sci-fi Story: Merrily, Merrily, Merrily, Merrily

A short story written by Luc Rioual. Inspired by federated 
learning.

Here is a god. Her name is Geoff and she is at work.
Geoff has been a god for a very, very long time, and her 

tour will come to an end at some point soon, once the Earth—
her charge—has ceased to be useful.

You see, Geoff is but one of many.
It is not so much that one denomination or another got 

it right, but that they all got parts right—which is itself, too, 
a cliché. How do I put this? Gods, like you, tire. They are not 
architects; their professions do not have built-in respites; they 
are caretakers at best, which is not meant to badmouth. You 
try sweeping deserts, combing fields, growing trees. Do you 
know the time it takes? The will? The water? The focus?

AGGREGATE
GOD MODEL

EARTH NODE 1

LOCAL GOD MODEL

EARTH NODE 2

LOCAL GOD MODEL

EARTH NODE 3

LOCAL GOD MODEL



Future  77

Contrary to popular belief, there is no seventh day. No 
eighth. Ninth. It is all one long day.

Tours last who knows how long.
At the end there is another contraction, like the first, and 

Geoff withdraws, vacates for Kokomo, for steel drums, etc., 
and in her absence unfolds a replacement: an omniscient, a 
custodian. We don’t know her name or temperament, but we 
know what she’ll know, not the facts and figures themselves 
but their shape: everything that is the case and is not. How is 
this? It’s complicated. It takes time.

Geoff likes her job. She likes her coworkers. Takes no 
breaks because she does not need them. Geoff has stamina.

Besides her obligations as terrestrial steward, she is 
charged with prep.

Omniscience is not inbred; it is, like a coat, presented to, 
put on, twirled in; hands will find tips left in the pockets, tags 
of authorship sewn by the collar, room in the size, restraint 
in the cut. Omniscience is not so much about power as it is 
access, which two are, on Earth, one and the same. Here it is 
different.

Geoff’s job is, then, to some extent, archival, but deeper, 
more integral. Yes, she stores the daily runoffs and ephemera, 
receipts and bills and dog-ears, but this is small potatoes, you 
see, to the bigger crop: her manner of resolution. Yield, here, 
is second to method. Anyone can keep newspapers, clip bits, 
but it takes practice to properly sort them, to learn to do it bet-
ter. This is her purpose: best practice.

As I’ve said, Geoff is not alone. There are Sarah, Jean, Ida, 
Kevin, Ross, Jack, Toby, Tara, Ben, Heidi, Tom, Thom, Thomas, 
Tommy Boy, Diana, Nell, Kristen, and others, whose roles are 



78  Future

all the same: to oversee. There are not yet infinite numbers 
of gods, realms, so on and so forth, though there is infinite 
potential; they have not all yet begun, but have, like members 
of a chorus singing in a round, begun in succession. They are 
not on different planes but in different spaces, homogeneous 
in law, hodgepodge in orchestration. Up is always up. Gravity 
pulls. Time’s arrow flies. What the laws stipulate, of course, 
too, is that no cross-pollination can occur. One would con-
taminate the other, tear holes in complicated fabrics, bring 
about Universal End—Geoff would cease; Sarah, Jean, Ida, 
poof, all, too. Bye bye birdie, yellow brick road, etc. No one 
knows precisely what another knows. They keep—as pertains 
practicals—to themselves.

And yet, as has been said—this is chief—Geoff et al. know 
everything that is the case and is not, Ludwig just a man, 
Geoff a god. We are talking gods, for god’s sake! Omniscience 
does not mean, here, infallibility. To know everything is not 
to always make the right decision. Resolution is hard. Will 
is what we share with Geoff, choice our first gift. Decisions 
require choices. Choices require knowledge. Knowledge can 
overwhelm. Geoff’s job is to care: verb, "look after and pro-
vide for the needs of." Latin states one cannot end a sentence 
on a preposition, but I can, and I will.

Geoff is, in some respects, a guinea pig, perhaps. There 
will be more like her. They will not be named Geoff. This will 
all happen again, but better, in hi-def.

Consider this moral dilemma: you watch someone litter. 
Do you pick up after them? Scold? Snap? Now multiply that. 
Multiply that by however many people there might be on a 
given planet, subtracting a bit for the morally robust, and you 



Future  79

still have several billion people littering. How do you manage 
this? Where do you intervene? When do you give up? You 
need more than just what you have before you. You need ev-
erything, everyone, a team effort. Supreme courts have nine 
justices, not one. Everything that is the case and not.

Tommy Boy has no namesake film—Chris Farley a perio-
dontist—Heidi no Princess Di. In Kevin’s there’s no cutlery to 
speak of so people everywhere eat with their hands, and in 
Tara’s no one keeps pets in their homes. Jean has blue ducks. 
Kristen no caves. Sarah lacks yoga. And in Jack’s everyone 
sleeps for days. You would not believe their skin. Their happi-
ness. Jack is proud. All there is is difference.

Things happen. The gods respond (or don’t). Effectiveness 
is measured. Adjustments made to what we might call pro-
tocols of assessment—they become smarter. Humans can 
be tricky. Geoff uploads. Geoff downloads. They all incor-
porate. What-ifs build out the properties of what-nows. Ida, 
Ross, Ben, et al.—Geoff and her lively cohort—how shrinks 
cannot talk, per se, cannot share what they know of their con-
stituents, their worlds, so they share process, they share tech-
nique; together, they learn; together, they build best practice; 
they hone their craft. They pass it down. There is a Foreman, 
somewhere else, who keeps track of it all. They only call him 
that: the Foreman. Some have said his name is Evan, but who 
knows. He disperses updates with consistency and briefs the 
newbies.

And yet, they are not perfect. Only so much can be done. 
Geoff is tired, too. What can be done? Drop interest rates? 
Frogs? Bombs? They do what they can to protect us from our-
selves. A nudge here, a net there.



80  Future

Geoff’s replacement will know so much. Everything and 
more.

People do not read. The poor can go hungry. Buffoons 
swell and rise like dough. Everything happens in rounds. Row, 
row, row your boat.



Conclusion  81

 
 
 
chapter 7
Conclusion

As we discuss throughout this report, particularly in 5.1 
Privacy and 6.1 Reducing Communication Costs, federated 
learning is not a perfect solution to the two problems men-
tioned in 1 Introduction: training data is often private and 
communication is often expensive. But federated learning is 
a good start!

It addresses problems that affect the most regulated, com-
petitive, and profitable industries. It also has the potential to 
be of huge benefit to worldwide healthcare outcomes. For this 
reason, we expect distributed, privacy-preserving, communi-
cation-minimizing machine learning to remain an active area 
of research and commercial experimentation for many years.

In moving the majority of the work to the edge, federated 
learning is part of the trend to move machine learning out of 
the data center, for reasons that include speed and cost. But 
in federated learning, the edge nodes create and improve the 
model (rather than merely applying it). In this sense, federat-
ed learning goes far beyond what people usually mean when 
they talk about edge AI.

Federated learning points to a future in which we work 
collectively to apply machine learning to some of toughest 
problems that humanity faces, while each retaining control 
over our own data.



82  Conclusion



Appendix: federated.py  83

 
 
 
appendix
federated.py

In this appendix we illustrate the core functionality of  
 federated.py , our PyTorch federated learning simulation 
module. The module consists of two classes, one representing 
a node and the other the server. Each node object has a subset 
of the training data, and a  train  method that initiates a single 
epoch of training then returns its model and the amount of 
training data it used.

 
 



84  Appendix: federated.py

The server object manages connections to many nodes. 
It has two important methods. The user of the module 
calls  round  repeatedly to do federated learning:

def round(self):

    """

    Do a round of federated learning:

     - instruct each node to train and return its model

     - replace the server model with the weighted average of the node models

     - replace the node models with the new server model

    Nodes with `participant=False` train but are not  

    included in the weighted average and do not receive a  

    copy of the server model.

    """

    updates = [node.train() for node in self.nodes]

    self.fedavg([u for u, node in zip(updates, self.nodes) if  

    node.participant])

    self.push_model(node for node in self.nodes if node.participant)

 



Appendix: federated.py  85

The method  fedavg  implements the federated averaging 
calculation:

def fedavg(self, updates):

    """

    Replace the server model with the weighted average of  

    the node models. `updates` is a list of dictionaries,  

    one for each node, each of which has `state_dict` (the  

    weights on that node) and `n_samples` (the amount of 

    training data on that node).

    """

    N = sum(u["n_samples"] for u in updates)

    for key, value in self.model.state_dict().items():

        weight_sum = (u["state_dict"][key] * u["n_samples"]  

        for u in updates)

        value[:] = sum(weight_sum) / N

Aside from the systems and networking issues discussed 
in this report, these two methods are a complete federated 
learning implementation.





 
 
 
 
 
 
 
 
 
About Cloudera Fast Forward Labs

Cloudera Fast Forward Labs is an applied machine learn-
ing research group. We help organizations recognize and 
develop new product and business opportunities through 
emerging technologies.

The Cloudera Fast Forward Labs Federated Learning re-
port is brought to you by Alice Albrecht, Grant Custer, Bri-
an Goral, Micha Gorelick, Seth Hendrickson, Mike Lee Wil-
liams, Hilary Mason, Ryan Micallef, Emanuel Moss, Nisha  
Muktewar, Bethann Noble, Justin Norman, Shioulin Sam, 
Friederike Schüür, Danielle Thorp, and the rest of the  
Cloudera team. Illustrations by Beste Miray Doǧan.

https://fastforwardlabs.com





November 2018 of 200

Federated Learning makes it possible to build machine 
learning systems without direct access to training 
data. The data remains in its original location, which 
helps to ensure privacy and reduces communication 
costs. Federated learning is a great fit for smartphones 
and edge hardware, healthcare and other privacy-
sensitive use cases, and industrial applications such as 
predictive maintenance.


